Ohio Election Analysis Verification of Nov 2020 Results: Robert Lee's Analysis of Ohio Data on GitHub efg, 2022-05-01

Outline

- Reproducible Research
- Robert Lee's GitHub Page, Limitations
- Jupyter and RStudio Notebooks
 - 1. Download Ohio voter data and "jsonify"
 - 2. Single County analysis: Cuyahoga and Franklin Counties
 - Registered Voters, Active Voters, and Nov 2020 Voted Counts
 - Fraction voted (turnout)
 - "Normalized" fraction voted ("key")
 - 3. All Ohio Counties: Normalized voter turnout "keys" for Nov 2020 election
 - 4. Generate Ohio statewide normalized turnout "key"
 - 5. Polynomial curve fitting of statewide "key"
 - 6. Compare county and state normalized turnout keys using "heatmap"
 - 7. Compare correlations of number of registered voters and number of Nov 2020 voters
 - 8. Predictions: Predict Hamilton County turnout using Ohio "key"
- Technical Questions

Reproducible Research

• Criticism of election process should not be another "black box."

Any proper analysis should ...

- Document data provenance starting with original government sources.
- Provide documented, step-by-step analysis, which can be reviewed and audited.

Robert Lee's Github Page

- The page compares the normalized turnout "keys" for several states: <u>https://github.com/rlee32/election-fraud-national</u>
- This page show details with python code for Ohio analysis: <u>https://github.com/rlee32/election-fraud-ohio</u>

☐ rlee32/election-fraud-ohio (Public)		
<> Code ⊙ Issues îl Pull requests	🕑 Actions 🗄 Projects 🖾 Wiki	③ Security L Insights
🐉 master 👻 🕻 1 branch 🚫 0 tags		Go to file Add file - Code -
rlee32 fix description		de484f9 on Apr 3, 2021 🗿 30 commits
p lots	add prediction plots	12 months ago
🗅 .gitignore	add prediction plots	12 months ago
Ohio_Counties_with_County_Codes.pdf	add source for county codes	12 months ago
C README.md	fix description	12 months ago
download_voter_database.py	improve plot, add plot image	12 months ago
generate_key.py	add prediction plots	12 months ago
🗅 jsonify.py	include more election years	12 months ago
plot_turnout_by_age.py	add prediction plots	12 months ago
D predict.py	add prediction plots	12 months ago
voting-machines-by-county.pdf	add prediction plots	12 months ago

Robert Lee's Github Page

- I converted Lee's Python scripts to be part of Jupyter notebooks to show documentation, code, results, graphics and comments in one place.
- Modifications to some of Lee's approaches and assumptions:
 - Used different file download process since Lee's approach didn't work for me.
 - Added curves for "Active" voters to Lee's plots of Registered and Nov 2020 Voters. Not necessary to compute key but adds additional insights.
 - Added county names to numbers. Clarified titles and axes labels.
 - Jupyter notebooks reject ages > 105 years instead of Lee's 150 year old limit.
 - Added legend to identify lines. Added grids to all plots.
- Added polynomial fits of statewide "normalized turnout" to reproduce Ohio "key".

Robert Lee's Github Page

Robert Lee's script	Corresponding Jupyter Notebooks
download_voter_database.py	Ohio-Analysis-1-setup.ipynb → .html
jsonify.py	
plot_turnout_by_age.py	Ohio-Analysis-2-Single-County.ipynb Ohio-Analysis-3-All-Counties.ipynb
generate_key.py	Ohio-Analysis-4-Generate-Key.ipynb
predict.py	Ohio-Analysis-5-Predictions-vs-Acutal-Votes.ipynb

Limitations

- I'm using latest Ohio data from 2022-03-25 since older Ohio files from the Nov. 2020 election are not readily available.
- Many Ohio voter records have been added, deleted or changed since the Nov. 2020 election.
 - Analysis here shows 7,431,918 Ohio registered voters with 5,656,585 voting in Nov. 2020.
 - Official Ohio statewide results for the Nov. 2020 election show 8,073,929 registered voters with 5,974,121 casting ballots.

Download Ohio voter data and "jsonify"

Notebook: Ohio-Analysis-1-setup.html

- State of Ohio online databases: <u>https://www.ohiosos.gov/secretary-office/online-databases/</u>
- Ohio County voter file download: <u>https://www6.ohiosos.gov/ords/f?p=111:1</u>
- Sample link to download county file 1, Adams County: <u>https://www6.ohiosos.gov/ords/f?p=VOTERFTP:DOWNLOAD::FILE:NO:2:</u> <u>P2_PRODUCT_NUMBER:1</u>
- Notebook downloaded 88 files 1.csv, 2.csv, ..., 88.csv to local directory: Election-Integrity/Ohio/rlee32/Analysis/voter_database
- Data was captured from Ohio SOS site on 2022-03-25.

Download Ohio voter data and "jsonify"

Notebook: Ohio-Analysis-1-setup.html

- Ohio Counties with county number 1 .. 88 <u>https://tax.ohio.gov/static/excise/Ohio%20County%20Listing.pdf</u>
- Map of Ohio Counties with county number <u>https://jfs.ohio.gov/PerformanceCenter/FastFacts/Ohio Counties wit</u> <u>h County Codes.pdf</u>
- Raw data looks like this for Adams County (1.csv; 17,046 records):

• • •

Download Ohio voter data and "jsonify"

Notebook: Ohio-Analysis-1-setup.html

- Analysis could have been performed using .csv files with Python "pandas" data analysis library, but Lee chose to convert to a "JSON" file format instead. I followed Lee's script using JSON.
- Notebook filtered data and converted files *n*.csv to *n*.json in local directory: Ohio/rlee32/Analysis/jsonified
- Raw JSON file (1.json; 187,497 records) looks like this:

```
{
   "date_of_birth": "1955-01-27",
   "registration_date": "2012-09-12",
   "voter_status": "ACTIVE",
   "general_2000": "",
   "general_2016": "X",
   "general_2020": "X",
   "general_2004": "",
   "general_2008": "",
   "general_2012": "X"
},
{
   "date_of_birth": "1984-07-05",
   "registration_date": "2004-09-29",
   "voter_status": "ACTIVE",
   "date_of_birth": "ACTIVE",
   "date_of_birth": "ACTIVE",
   "voter_status": "ACTIVE",
   "date_of_birth": "ACTIVE",
   "voter_status": "ACTIVE",
```

. . .

Single County analysis: Cuyahoga and Franklin Counties

Ohio-Analysis-2-Single-County-Cuyahoga.html Ohio-Analysis-2-Single-County-Franklin.html

Source: Ohio Secretary of State's web site; data captured on 2020-03-25. Profiles of Ohio's two largest counties are very different based on age. "Active" voter lines added to Lee's analysis to explore that factor.

Single County analysis

fraction voted (turnout): Ohio-Analysis-2-Single-County-Cuyahoga.html Ohio-Analysis-2-Single-County-Franklin.html

For each age interval, 18 to 105 years:

Fraction Active = $\frac{Active voters}{Registered voters}$

Fraction Voted = $\frac{Nov \ 2020 \ voters}{Registered \ voters}$ = **Turnout**

Overall values (not averages):

Overall Active Fraction = $\frac{\sum_{age} Active voters}{\sum_{age} Registered voters}$ **Overall Voted Fraction** = $\frac{\sum_{age} Nov 2020 voters}{\sum_{age} Registered voters}$

Single County analysis

"normalized" fraction voted ("normalized" turnout): Ohio-Analysis-2-Single-County-Cuyahoga.html Ohio-Analysis-2-Single-County-Franklin.html

For each age interval, 18 to 105 years:

Single County analysis

"normalized" fraction voted ("normalized" turnout): Ohio-Analysis-2-Single-County-Cuyahoga.html Ohio-Analysis-2-Single-County-Franklin.html

Comments:

The "normalized" fraction shows age intervals that are "above" 1 or "below" 1, where 1 is the overall fraction for all ages.

For example, in Cuyahoga County voter turnout was **below** the overall rate for ages ~18 to ~45 and above 95. Turnout was **above** the overall rate for ages ~45 to ~95.

"Overall rate" is not the average by age.

All Ohio Counties: "Normalized" Voter Turnout Keys Ohio-Analysis-3-All-Counties.html

Notes:

- These county plots include the red lines in the normalized turnout plots for Cuyahoa and Franklin Counties on the last slide
- Variation of normalized turnout varies by 15-20% across all counties for any given age.
- All of these county "keys" are highly correlated but not identical.

All Ohio Counties: "Normalized" Voter Turnout Keys Ohio-Key-Heatmap.html

Compare statewide "key" to separate "keys" by county

Ohio Normalized Voter Fraction by Age

Ohio state = red line; 88 counties = grey lines; no exclusions for low counts cause 'noise' for older ages

The normalized voter turnout by age varies Considerably by county

Small counts (small "n") for ages 90+ result in "noisy" normalized key

Generate Ohio Normalized Turnout "Key"

Ohio-Analysis-4-Generate-Key.html

Apply methodology used for single county in previous slides to whole State of Ohio:

Adapted from Lee's script: generate_key.py

Dr. Frank's version of OH Key from presentation to Kansas House Election Committee on 2022-03-15

"Key" written to file **key.json**, which is not easy to review in a text editor or Excel since it's over 200 characters wide, and not necessarily ordered.

{"18": 1.0148327400458397, "19": 0.8998751228239705,

· · · · "105": 0.3339083283101293, "104": 0.37172693302673665}

Fit Polynomials to Ohio Normalized Turnout Key

Ohio Normalized Voter Fraction by Age Polynomial fits of various degree

- Here age range limited to [18, 100].
- Fit Ohio Normalized Turnout curve (red dots) to polynomials of various degrees
- Higher degree provides curvature/ "wiggliness", but too high can lead to overfitting.
- Akaike Information Criterion (AIC) indicates highest degree over range 1 to 9 was the "best" model.
- R² approaches 1 as degree increases.
- There is nothing "remarkable" about these curve fits.
- Curve fits offer few insight about data but provide good numerical interpolation.

RStudio Notebook: Ohio-Key-Polynomials.html, Section 5.1 (AIC), Section 5.2 (R²), polyfitsMany-1.png

Fit Polynomials to Ohio Normalized Turnout Key

95% confidence interval is about width of line for 7-th degree fit, but this may be "overfitting"

In polynomial equations above, x = Age, y = Normalized Fraction

Largest residual over range: 0.132 (5th), 0.062 (6th), 0.038 (7th)

But, there is no need for polynomial fit if original normalized turnout curve is used directly!

RStudio Notebook: Ohio-Key-Polynomials.html, Section 6, polyfit5-1.png, polyfit6-1.png, polyfit7-1.png

County vs State Normalized "Key" Curves

All curves are *highly* correlated but not identical

All Counties

Ohio Statewide

Scaling is different between plots.

Plots show raw turnout values without using polynomial fit.

Ohio-Analysis-3-All-Counties.html; Ohio-Key-Polynomials.html, Section 3, OhioNormalized-1.png

Ohio Turnout "Key"

Key: 6th Degree Polynomial Fit to Data (7 numbers)

Key: Based on Yearly Data (83 numbers)

Scaling is different between plots but both are based on the same data

County Normalized Curves

All Counties

?

Stark County profile is most similar to Ohio statewide profile

